Molecular Therapy: Nucleic Acids (Dec 2020)
TNFAIP8 Promotes Cisplatin Chemoresistance in Triple-Negative Breast Cancer by Repressing p53-Mediated miR-205-5p Expression
Abstract
Tumor necrosis factor alpha-induced protein 8 (TNFAIP8) is implicated in the tumor progression and prognosis of triple-negative breast cancer (TNBC), but the detailed regulatory mechanism of TNFAIP8 in cisplatin tolerance in TNBC has not yet been investigated. TNFAIP8 was evidently upregulated in TNBC tumor tissues and cell lines. Knocking down TNFAIP8 led to impaired proliferation and elevated apoptosis of TNBC cells upon cisplatin (DDP) treatment. Mechanistic studies revealed that TNFAIP8 repressed the expression of p53 and p53-promoted microRNA (miR)-205-5p; moreover, miR-205-5p targeted multiple genes required for the cell cycle and repressed Akt phosphorylation, which thus inhibited the proliferation of TNBC cells. In addition, silencing of TNFAIP8 led to the upregulation of miR-205-5p and the restraint of the TRAF2-NF-κB pathway, which thus enhanced the suppressive effects of DDP on tumor growth in nude mice. This study revealed that TNFAIP8 was essential in the DDP tolerance formation of TNBC cells by reducing p53-promoted miR-205-5p expression. Thus, targeting TNFAIP8 might become a promising strategy to suppress TNBC progression.