Forests (Apr 2019)

The Effect of Vegetation Enhancement on Particulate Pollution Reduction: CFD Simulations in an Urban Park

  • Hongqiao Qin,
  • Bo Hong,
  • Runsheng Jiang,
  • Shanshan Yan,
  • Yunhan Zhou

DOI
https://doi.org/10.3390/f10050373
Journal volume & issue
Vol. 10, no. 5
p. 373

Abstract

Read online

Vegetation in parks is regarded as a valuable way to reduce particulate pollution in urban environments but there is little quantitative information on its effectiveness. The aim of this study was to conduct on-site measurements and computational fluid dynamic (CFD) simulations to determine the aerodynamic and deposition effects of vegetation enhancement on particulate matter (PM) dispersions in an urban park in Xi’an, China. Initially, the airflow characteristics and deposition effects of vegetation were predicted and compared with measured air velocities and particulate pollution data to validate the numerical modeling. Then, associated coverage ratios and supplementary green areas (tree coverage ratio, crown volume coverage (CVC), and roof greening) were added to numerical simulations. After a series of numerical simulations and comparisons, results indicated that: (1) Numerical models with simplified vegetation method could reproduce the distribution of particulate matter concentrations in the real park environment; (2) with a tree coverage ratio >37.8% (or CVC > 1.8 m3/m2), the pedestrian-level PM2.5 could meet the World Health Organization’s air quality guidelines (IT-1) standards in the park; (3) roof greening on leeward buildings produced greater PM removal effects compared with windward buildings; and (4) the most economical and reasonable tree coverage ratio and CVC to reduce atmospheric PM in urban parks should be 30% and 1.8 m3/m2, respectively. These results are useful guidelines for urban planners towards a sustainable design of vegetation in urban parks.

Keywords