Sensors (Oct 2019)

Flow Measurement of Oil-Water Two-Phase Flow at Low Flow Rate Using the Plug-in Conductance Sensor Array

  • Ningde Jin,
  • Yiyu Zhou,
  • Xinghe Liang,
  • Dayang Wang,
  • Lusheng Zhai,
  • Jidong Wei

DOI
https://doi.org/10.3390/s19214649
Journal volume & issue
Vol. 19, no. 21
p. 4649

Abstract

Read online

In order to improve the flow measurement accuracy of oil-water two-phase flow at low flow rate, this paper presents a plug-in conductance sensor array (PICSA) for the measurement of water holdup and cross-correlation velocity. Due to the existence of the insert body in PICSA, the effect of slippage and the non-uniform distribution of dispersed phase on the measurement of oil-water two-phase flow at low flow rate can be reduced. The finite element method is used to analyze the electric field distribution characteristics of the plug-in conductance sensor, and the sensor geometry is optimized. The dynamic experiment of oil-water two-phase flow is carried out where water cut Kw and mixture velocity Um are set in the range of 10−98% and 0.0184−0.2580 m/s respectively. Experimental results show that the PICSA has good resolution in water holdup measurement for dispersed oil-in-water slug flow (D OS/W), transition flow (TF), dispersed oil-in-water bubble flow (D O/W) and very fine dispersed oil-in-water bubble flow (VFD O/W). In addition, the cross-correlation velocity of the oil-water two-phase flow is obtained by using the plug-in upstream and downstream conductance sensor arrays. The relationship between the cross-correlation velocity and mixture velocity is found to be sensitive to the change of flow pattern, but it has a good linear relationship under the same flow pattern. Based on the flow pattern identification, a good prediction result of the mixture velocity is obtained using kinematic wave theory. Finally, a high precision prediction of the individual phase volume fraction of oil-water two-phase flow at low flow rate is achieved by using the drift flux model.

Keywords