Microbial Cell Factories (Feb 2024)

Production and characterization of novel marine black yeast’s exopolysaccharide with potential antiradical and anticancer prospects

  • Eman H. Zaghloul,
  • Hala H. Abdel-Latif,
  • Asmaa Elsayis,
  • Sahar W.M. Hassan

DOI
https://doi.org/10.1186/s12934-024-02332-1
Journal volume & issue
Vol. 23, no. 1
pp. 1 – 13

Abstract

Read online

Abstract The marine black yeasts are characterized by the production of many novel protective substances. These compounds increase their physiological adaptation to multi-extreme environmental stress. Hence, the exopolysaccharide (EPS) producing marine black yeast SAHE was isolated in this study. It was molecularly identified as Hortaea werneckii (identity 98.5%) through ITS1 and ITS4 gene sequencing analysis. The physicochemical properties of the novel SAHE-EPS were investigated through FTIR, GC-MS, TGA, ESM, and EDX analysis, revealing its heteropolysaccharide nature. SAHE-EPS was found to be thermostable and mainly consists of sucrose, maltose, cellobiose, lactose, and galactose. Furthermore, it exhibited an amorphous texture and irregular porous surface structure. SAHE-EPS showed significant antiradical activity, as demonstrated by the DPPH radical scavenging assay, and the IC50 was recorded to be 984.9 μg/mL. In addition, SAHE-EPS exhibited outstanding anticancer activity toward the A549 human lung cancer cell line (IC50 = 22.9 μg/mL). Conversely, it demonstrates minimal cytotoxicity toward the WI-38 normal lung cell line (IC50 = 203 μg/mL), which implies its safety. This study represents the initial attempt to isolate and characterize the chemical properties of an EPS produced by the marine black yeast H. werneckii as a promising antiradical and anticancer agent.

Keywords