Applied Sciences (Jun 2022)
Frequency Conversion Interface towards Quantum Network: From Atomic Transition Line to Fiber Optical Communication Band
Abstract
Quantum repeater is a key component of quantum network, and atomic memory is one of the important candidates for constructing quantum repeater. However, the atomic transition wavelength is not suitable for long-distance transmission in optical fiber. To bridge atomic memory and fiber communication, we demonstrate a frequency conversion interface from rubidium D1 line (795 nm) to the optical communication L-band (1621 nm) based on difference frequency generation. To reduce broadband noise of spontaneous Raman scattering caused by strong pumping light, we use a combination of two cascaded etalons and a Fabry-Perot cavity with low finesse to narrow the noise bandwidth to 11.7 MHz. The filtering system is built by common optical elements and is easy to use; it can be widely applied in frequency conversion process. We show that the signal-noise ratio of the converted field is good enough to reduce the input photon number below 1 under the condition of low external device conversion efficiency (0.51%) and large duration of input pulse (250 ns). The demonstrated frequency conversion interface has important potential application in quantum networks.
Keywords