F1000Research (Mar 2023)
Exploring the anti-inflammatory activities, mechanism of action and prospective drug delivery systems of tocotrienol to target neurodegenerative diseases [version 1; peer review: 2 approved, 1 approved with reservations]
Abstract
A major cause of death in the elderly worldwide is attributed to neurodegenerative diseases, such as AD (Alzheimer’s disease), PD (Parkinson’s disease), ALS (Amyotrophic lateral sclerosis), FRDA (Friedreich’s ataxia), VaD (Vascular dementia) etc. These can be caused due to multiple factors such as genetic, physiological problems like stroke or tumor, or even external causes like viruses, toxins, or chemicals. T3s (tocotrienols) exhibit various bioactive properties where it acts as an antioxidant, anti-inflammatory, anti-tumorigenic, and cholesterol lowering agent. Since T3 interferes with and influences several anti-inflammatory mechanisms, it aids in combating inflammatory responses that lead to disease progression. T3s are found to have a profound neuroprotective ability, however, due to their poor oral bioavailability, their full potential could not be exploited. Hence there is a need to explore other drug delivery techniques, especially focusing on aspects of nanotechnology. In this review paper we explore the anti-inflammatory mechanisms of T3 to apply it in the treatment of neurodegenerative diseases and also discusses the possibilities of nano methods of administering tocotrienols to target neurodegenerative diseases.