Software (Mar 2024)

Emergent Information Processing: Observations, Experiments, and Future Directions

  • Jiří Kroc

DOI
https://doi.org/10.3390/software3010005
Journal volume & issue
Vol. 3, no. 1
pp. 81 – 106

Abstract

Read online

Science is currently becoming aware of the challenges in the understanding of the very root mechanisms of massively parallel computations that are observed in literally all scientific disciplines, ranging from cosmology to physics, chemistry, biochemistry, and biology. This leads us to the main motivation and simultaneously to the central thesis of this review: “Can we design artificial, massively parallel, self-organized, emergent, error-resilient computational environments?” The thesis is solely studied on cellular automata. Initially, an overview of the basic building blocks enabling us to reach this end goal is provided. Important information dealing with this topic is reviewed along with highly expressive animations generated by the open-source, Python, cellular automata software GoL-N24. A large number of simulations along with examples and counter-examples, finalized by a list of the future directions, are giving hints and partial answers to the main thesis. Together, these pose the crucial question of whether there is something deeper beyond the Turing machine theoretical description of massively parallel computing. The perspective, future directions, including applications in robotics and biology of this research, are discussed in the light of known information.

Keywords