Nature Communications (Jul 2024)

Neutrophil extracellular traps-inspired DNA hydrogel for wound hemostatic adjuvant

  • Rui Ye,
  • Ziyu Zhu,
  • Tianyi Gu,
  • Dengjie Cao,
  • Kai Jiang,
  • Qiang Dai,
  • Kuoran Xing,
  • Yifan Jiang,
  • Siyi Zhou,
  • Ping Cai,
  • David Tai Leong,
  • Mengfei Yu,
  • Jie Song

DOI
https://doi.org/10.1038/s41467-024-49933-3
Journal volume & issue
Vol. 15, no. 1
pp. 1 – 14

Abstract

Read online

Abstract Severe traumatic bleeding may lead to extremely high mortality rates, and early intervention to stop bleeding plays as a critical role in saving lives. However, rapid hemostasis in deep non-compressible trauma using a highly water-absorbent hydrogel, combined with strong tissue adhesion and bionic procoagulant mechanism, remains a challenge. In this study, a DNA hydrogel (DNAgel) network composed of natural nucleic acids with rapid water absorption, high swelling and instant tissue adhesion is reported, like a band-aid to physically stop bleeding. The excellent swelling behavior and robust mechanical performance, meanwhile, enable the DNAgel band-aid to fill the defect cavity and exert pressure on the bleeding vessels, thereby achieving compression hemostasis for deep tissue bleeding sites. The neutrophil extracellular traps (NETs)-inspired DNAgel network also acts as an artificial DNA scaffold for erythrocytes to adhere and aggregate, and activates platelets, promoting coagulation cascade in a bionic way. The DNAgel achieves lower blood loss than commercial gelatin sponge (GS) in male rat trauma models. In vivo evaluation in a full-thickness skin incision model also demonstrates the ability of DNAgel for promoting wound healing. Overall, the DNAgel band-aid with great hemostatic capacity is a promising candidate for rapid hemostasis and wound healing.