Remote Sensing (Jun 2024)

Reconstructing Snow-Free Sentinel-2 Satellite Imagery: A Generative Adversarial Network (GAN) Approach

  • Temitope Seun Oluwadare,
  • Dongmei Chen,
  • Olawale Oluwafemi,
  • Masoud Babadi,
  • Mohammad Hossain,
  • Oluwaseun Ibukun

DOI
https://doi.org/10.3390/rs16132352
Journal volume & issue
Vol. 16, no. 13
p. 2352

Abstract

Read online

Sentinel-2 satellites are one of the major instruments in remote sensing (RS) technology that has revolutionized Earth observation research, as its main goal is to offer high-resolution satellite data for dynamic monitoring of Earth’s surface and climate change detection amongst others. However, visual observation of Sentinel-2 satellite data has revealed that most images obtained during the winter season contain snow noise, posing a major challenge and impediment to satellite RS analysis of land surface. This singular effect hampers satellite signals from capturing important surface features within the geographical area of interest. Consequently, it leads to information loss, image processing problems due to contamination, and masking effects, all of which can reduce the accuracy of image analysis. In this study, we developed a snow-cover removal (SCR) model based on the Cycle-Consistent Adversarial Networks (CycleGANs) architecture. Data augmentation procedures were carried out to salvage the effect of the limited availability of Sentinel-2 image data. Sentinel-2 satellite images were used for model training and the development of a novel SCR model. The SCR model captures snow and other prominent features in the Sentinel-2 satellite image and then generates a new snow-free synthetic optical image that shares the same characteristics as the source satellite image. The snow-free synthetic images generated are evaluated to quantify their visual and semantic similarity with original snow-free Sentinel-2 satellite images by using different image qualitative metrics (IQMs) such as Structural Similarity Index Measure (SSIM), Universal image quality index (Q), and peak signal-to-noise ratio (PSNR). The estimated metric data shows that Q delivers more metric values, nearly 95%, than SSIM and PRSN. The methodology presented in this study could be beneficial for RS research in DL model development for environmental mapping and time series modeling. The results also confirm the DL technique’s applicability in RS studies.

Keywords