TaNAC48 positively regulates drought tolerance and ABA responses in wheat (Triticum aestivum L.)
Jun Chen,
Yan Gong,
Yuan Gao,
Yongbin Zhou,
Ming Chen,
Zhaoshi Xu,
Changhong Guo,
Youzhi Ma
Affiliations
Jun Chen
The National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
Yan Gong
Key Laboratory of Molecular and Cytogenetics, College of Life Science and Technology, Harbin Normal University, Harbin 150025, Heilongjiang, China
Yuan Gao
The National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
Yongbin Zhou
The National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
Ming Chen
The National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
Zhaoshi Xu
The National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
Changhong Guo
Key Laboratory of Molecular and Cytogenetics, College of Life Science and Technology, Harbin Normal University, Harbin 150025, Heilongjiang, China; Corresponding authors.
Youzhi Ma
Key Laboratory of Molecular and Cytogenetics, College of Life Science and Technology, Harbin Normal University, Harbin 150025, Heilongjiang, China; The National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Corresponding authors.
NAC family transcription factors (TFs) are important regulators in plant development and stress responses. However, the biological functions of NAC TFs in wheat are rarely studied. In this study, 43 putative drought-induced NAC genes were identified from de novo transcriptome sequencing data of wheat following drought treatment. Twelve wheat NACs along with ten known stress-related NACs from Arabidopsis and rice were clustered into Group II based on a phylogenetic analysis. TaNAC48, which showed a higher and constitutive expression level in Group II, was selected for further investigation. TaNAC48 transcript was up-regulated by drought, PEG, H2O2 and abscisic acid (ABA) treatment and encoded a nuclear localized protein. Overexpression of TaNAC48 significantly promoted drought tolerance with increased proline content, and decreased rates of water loss, malondialdehyde (MDA), H2O2 and O2− content. Root length and a stomatal aperture assay confirmed that TaNAC48-overexpression plants increased sensitivity to ABA. Electrophoretic mobility shift assay (EMSA) and luciferase reporter analysis indicated that TaAREB3 could bind to a cis-acting ABA-responsive element (ABRE) on TaNAC48 promoter and activate the expression of TaNAC48. These results suggest that TaNAC48 is essential in mediating crosstalk between the ABA signaling pathway and drought stress responses in wheat.