Physics Letters B (Sep 2017)

BTZ black hole from Poisson–Lie T-dualizable sigma models with spectators

  • A. Eghbali,
  • L. Mehran-nia,
  • A. Rezaei-Aghdam

DOI
https://doi.org/10.1016/j.physletb.2017.07.044
Journal volume & issue
Vol. 772, no. C
pp. 791 – 799

Abstract

Read online

The non-Abelian T-dualization of the BTZ black hole is discussed in detail by using the Poisson–Lie T-duality in the presence of spectators. We explicitly construct a dual pair of sigma models related by Poisson–Lie symmetry. The original model is built on a 2+1-dimensional manifold M≈O×G, where G as a two-dimensional real non-Abelian Lie group acts freely on M, while O is the orbit of G in M. The findings of our study show that the original model indeed is canonically equivalent to the SL(2,R) Wess–Zumino–Witten (WZW) model for a given value of the background parameters. Moreover, by a convenient coordinate transformation we show that this model describes a string propagating in a spacetime with the BTZ black hole metric in such a way that a new family of the solutions to low energy string theory with the BTZ black hole vacuum metric, constant dilaton field and a new torsion potential is found. The dual model is built on a 2+1-dimensional target manifold M˜ with two-dimensional real Abelian Lie group G˜ acting freely on it. We further show that the dual model yields a three-dimensional charged black string for which the mass M and axion charge Q per unit length are calculated. After that, the structure and asymptotic nature of the dual space–time including the horizon and singularity are determined.

Keywords