A surgical Decision-making scoring model for spontaneous ventilation- and mechanical ventilation-video-assisted thoracoscopic surgery in non-small-cell lung cancer patients
Runchen Wang,
Qixia Wang,
Hengrui Liang,
Zhiming Ye,
Jiawen Qiu,
Yu Jiang,
Jianxing He,
Lei Zhao,
Wei Wang
Affiliations
Runchen Wang
Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health
Qixia Wang
Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health
Hengrui Liang
Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health
Zhiming Ye
Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health
Jiawen Qiu
Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health
Yu Jiang
Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health
Jianxing He
Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health
Lei Zhao
Department of Physiology, School of Basic Medical Sciences, Guangzhou Medical University
Wei Wang
Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health
Abstract Backgrounds Spontaneous ventilation-video-assisted thoracoscopic surgery (SV-VATS) has been applied to non-small cell lung cancer (NSCLC) patients in many centers. Since it remains a new and challenging surgical technique, only selected patients can be performed SV-VATS. We aim to conduct a retrospective single-center study to develop a clinical decision-making model to make surgery decision between SV-VATS and MV (mechanical ventilation) -VATS in NSCLC patients more objectively and individually. Methods Four thousand three hundred sixty-eight NSCLC patients undergoing SV-VATS or MV-VATS in the department of thoracic surgery between 2011 and 2018 were included. Univariate and multivariate regression analysis were used to identify potential factors influencing the surgical decisions. Factors with statistical significance were selected for constructing the Surgical Decision-making Scoring (SDS) model. The performance of the model was validated by area under the receiver operating characteristic curve (AUC), calibration curves and decision curve analysis (DCA). Results The Surgical Decision-making Scoring (SDS) model was built guided by the clinical judgment and statistically significant results of univariate and multivariate regression analyses of potential predictors, including smoking status (p = 0.03), BMI (p < 0.001), ACCI (p = 0.04), T stage (p < 0.001), N stage (p < 0.001), ASA grade (p < 0.001) and surgical technique (p < 0.001). The AUC of the training group and the testing group were 0.72 and 0.70, respectively. The calibration curves and the DCA curve revealed that the SDS model has a desired performance in predicting the surgical decision. Conclusions This SDS model is the first clinical decision-making model developed for an individual NSCLC patient to make decision between SV-VATS and MV-VATS.