Bioengineering (Jun 2024)

Photocrosslinkable Sericin Hydrogel Injected into the Anterior Chamber of Mice with Chronic Ocular Hypertension Efficacy, Medication Sensitivity, and Material Safety

  • Li Liao,
  • Wenxiang Zhu,
  • Hairong Liu,
  • Ping Wu,
  • Xinyue Zhang,
  • Xiaoyu Zhou,
  • Jiahao Xu,
  • Yang Zhao,
  • Xuanchu Duan

DOI
https://doi.org/10.3390/bioengineering11060607
Journal volume & issue
Vol. 11, no. 6
p. 607

Abstract

Read online

(1) Background: A rise in intraocular pressure (IOP) and decreased retinal ganglion cells are frequent indicators of effective modeling of chronic ocular hypertension in mice. In this study, the sensitivity of the mouse model to pharmaceutical therapy to reduce intraocular tension was assessed, the model’s safety was confirmed using a cytotoxicity test, and the success rate of the mouse model of ocular hypertension was assessed by assessing alterations in IOP and neurons in the ganglion cell layer. (2) Methods: A mouse model of chronic ocular hypertension was produced in this study by employing photocrosslinkable sericin hydrogel injection and LED lamp irradiation. The eyes of 25 C57BL/6 male mice were subjected to 405 nm UV light from the front for 2 min after being injected with 5 μL of sericin hydrogel in the anterior chamber of the left eye. IOP in the mice was measured daily, and IOP rises greater than 5 mmHg were considered intraocular hypertension. When the IOP was lowered, the intervention was repeated once, but the interval between treatments was at least 2 weeks. The right eyes were not treated with anything as a normal control group. Mice eyeballs were stained with HE, Ni-type, and immunofluorescence to assess the model’s efficacy. Two common drugs (tafluprost eye drops and timolol eye drops) were provided for one week after four weeks of stable IOP, and IOP changes were assessed to determine the drug sensitivity of the mouse model of chronic ocular hypertension. Furthermore, CellTiter 96® AQueous One Solution Cell Proliferation Assay (MTS) was utilized to investigate the safety of the ocular hypertension model by evaluating the deleterious effects of photocrosslinkable sericin hydrogel on cells. (3) Results: Before injection, the basal IOP was (9.42 ± 1.28) mmHg (1 kPa = 7.5 mmHg) in the experimental group and (9.08 ± 1.21) in the control group. After injection, cataract occurred in one eye, corneal edema in one eye, endophthalmitis in one eye, iris incarceration in one eye, and eyeball atrophy in one eye. Five mice with complications were excluded from the experiment, and twenty mice were left. Four weeks after injection, the IOP of the experimental group was maintained at (19.7 ± 4.52) mmHg, and that of the control group was maintained at (9.92 ± 1.55) mmHg, and the difference between the two groups was statistically significant (p p > 0.05), there were statistically significant differences in the timolol eye drops group (p p p > 0.05). In the high-IOP group, the protein (sericin hydrogel) showed a short strips or fragmented structure in the anterior chamber, accompanied by a large number of macrophages and a small number of plasma cells. The shape of the chamber angle was normal in the blank control group. The number of retinal ganglion cells decreased significantly 8 weeks after injection of sericin hydrogel into the anterior chamber, and the difference was statistically significant compared with the blank control group (p ® assay kit of MTS compared with the blank control group (p > 0.05). (4) Conclusions: A mouse model of chronic intraocular hypertension can be established successfully by injecting sericin in the anterior chamber and irradiating with ultraviolet light. The model can simulate the structural and functional changes of glaucoma and can effectively reduce IOP after the action of most antihypertensive drugs, and it is highly sensitive to drugs. Sericin has no obvious toxic effect on cells and has high safety.

Keywords