How Biological Activity in Sea Cucumbers Changes as a Function of Species and Tissue
Sabrina Sales,
Helena M. Lourenço,
Narcisa M. Bandarra,
Cláudia Afonso,
Joana Matos,
Maria João Botelho,
Maria Fernanda Pessoa,
Pedro M. Félix,
Arthur Veronez,
Carlos Cardoso
Affiliations
Sabrina Sales
Division of Aquaculture and Upgrading (DivAV), Portuguese Institute for the Sea and Atmosphere (IPMA, IP), Rua Alfredo Magalhães Ramalho 6, 1495-006 Lisbon, Portugal
Helena M. Lourenço
Division of Aquaculture and Upgrading (DivAV), Portuguese Institute for the Sea and Atmosphere (IPMA, IP), Rua Alfredo Magalhães Ramalho 6, 1495-006 Lisbon, Portugal
Narcisa M. Bandarra
Division of Aquaculture and Upgrading (DivAV), Portuguese Institute for the Sea and Atmosphere (IPMA, IP), Rua Alfredo Magalhães Ramalho 6, 1495-006 Lisbon, Portugal
Cláudia Afonso
Division of Aquaculture and Upgrading (DivAV), Portuguese Institute for the Sea and Atmosphere (IPMA, IP), Rua Alfredo Magalhães Ramalho 6, 1495-006 Lisbon, Portugal
Joana Matos
Division of Aquaculture and Upgrading (DivAV), Portuguese Institute for the Sea and Atmosphere (IPMA, IP), Rua Alfredo Magalhães Ramalho 6, 1495-006 Lisbon, Portugal
Maria João Botelho
Division of Oceanography and Marine Environment (DivOA), Portuguese Institute for the Sea and Atmosphere (IPMA, IP), 1495-165 Lisbon, Portugal
Maria Fernanda Pessoa
GeoBioTec, Department of Earth Sciences, Faculty of Science and Technology (UNL), Largo da Torre, 2829-516 Caparica, Portugal
Pedro M. Félix
MARE—Marine and Environmental Sciences Centre/ARNET—Aquatic Research Network, Faculty of Sciences, University of Lisbon, 1749-017 Lisbon, Portugal
Arthur Veronez
Centre for Functional Ecology—Science for People & the Planet, Department of Life Sciences, Faculty of Science and Technology, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
Carlos Cardoso
Division of Aquaculture and Upgrading (DivAV), Portuguese Institute for the Sea and Atmosphere (IPMA, IP), Rua Alfredo Magalhães Ramalho 6, 1495-006 Lisbon, Portugal
Biological activity and bioactive compound content in sea cucumbers was assessed, considering Parastichopus regalis, Holothuria mammata, Holothuria forskali, and Holothuria arguinensis as species and intestine, muscle band, respiratory tree, body wall, and gonads as tissues. P. regalis had the lowest content in phenolic compounds and antioxidant activity in contrast to Holothuria species. In the respiratory tree, the highest phenolic concentration was recorded in H. arguinensis, 76.4 ± 1.2 mg GAE/100 g dw vs. 21.0–49.0 mg GAE/100 g dw in the other species. H. arguinensis had the highest DPPH and FRAP results in the gonads, 13.6 ± 0.7 mg AAE/100 g dw vs. 2.6–3.5 mg AAE/100 g dw and 27.1 ± 0.3 μmol Fe2+/g dw vs. 8.0–15.9 μmol Fe2+/g dw, respectively. Overall, P. regalis biomass presented the highest anti-inflammatory activity levels and H. arguinensis the lowest anti-inflammatory levels. The respiratory tree was the most anti-inflammatory (measured by the inhibition of cyclooxygenase-2, COX-2) tissue in H. mammata and H. forskali (also the muscle band in this case), 76.3 ± 6.3% and 59.5 ± 3.6% COX-2 inhibition in 1 mg/mL aqueous extracts, respectively. The results demonstrated a variable bioactive potential and advantage in targeting antioxidant properties in the muscle band and anti-inflammatory activity in the respiratory tree, which may constitute a starting point for a biorefinery approach envisaging multiple applications.