PLoS ONE (Jan 2019)
A real-time gesture recognition system using near-infrared imagery.
Abstract
Visual hand gesture recognition systems are promising technologies for Human Computer Interaction, as they allow a more immersive and intuitive interaction. Most of these systems are based on the analysis of skeleton information, which is in turn inferred from color, depth, or near-infrared imagery. However, the robust extraction of skeleton information from images is only possible for a subset of hand poses, which restricts the range of gestures that can be recognized. In this paper, a real-time hand gesture recognition system based on a near-infrared device is presented, which directly analyzes the infrared imagery to infer static and dynamic gestures, without using skeleton information. Thus, a much wider range of hand gestures can be recognized in comparison with skeleton-based approaches. To validate the proposed system, a new dataset of near-infrared imagery has been created, from which good results that outperform other state-of-the-art strategies have been obtained.