Remote Sensing (Sep 2022)

Night-Time Skyglow Dynamics during the COVID-19 Epidemic in Guangbutun Region of Wuhan City

  • Chengen Li,
  • Xi Li,
  • Changjun Zhu

DOI
https://doi.org/10.3390/rs14184451
Journal volume & issue
Vol. 14, no. 18
p. 4451

Abstract

Read online

The COVID-19 epidemic lockdown has a direct influence on urban socioeconomic activity, including night-time light (NTL) changes. Night-time skyglow, a form of light pollution caused by NTL, is also affected by public emergencies. Here we investigated the impact of the lockdown on the night-time skyglow in the Guangbutun region of Wuhan, China. We monitored the night-time sky from 1 November 2019 to 12 April 2020 and compared the intraday skyglow pattern and day-to-day variation of skyglow before and during the lockdown. We found that the detected earliest shutdown timing of lights (STL) was moved from 22:00 (before the lockdown) to 21:30 (after entering the lockdown), and the fluctuation of skyglow decreased significantly during the lockdown. Furthermore, we found the night-time skyglow at various time intervals generally decreased and then recovered during the lockdown. The most severe decrease in zenith sky brightness (ZSB) was observed at the 21:30–22:00 time interval, with a decrease ratio (DR) of 72.1% and a recovery ratio (RR) of only 22.6%. On the other hand, the skyglow near midnight was the least affected by the lockdown, and the RR (32.6% and 24.3%) was comparable to the DR (30.4% and 38.2%), which means the skyglow at this time basically recovered to the pre-epidemic level. We conclude that long-term monitoring of sky brightness using single-channel photometers, such as SQMs, can provide a multi-temporal microscopic perspective for studying the dynamics of skyglow caused by human activities.

Keywords