Interpretation and Dynamics of the Lotka–Volterra Model in the Description of a Three-Level Laser
Vicente Aboites,
Jorge Francisco Bravo-Avilés,
Juan Hugo García-López,
Rider Jaimes-Reategui,
Guillermo Huerta-Cuellar
Affiliations
Vicente Aboites
Laboratorio de Láseres, Centro de Investigaciones en Óptica, Loma del Bosque 115, Col. Lomas del Campestre, León, Guanajuato 37150, Mexico
Jorge Francisco Bravo-Avilés
Departamento de Actuaría, Física y Matemáticas, Universidad de las Américas Puebla, Ex-Hacienda Santa Catarina Mártir, San Andrés Cholula, Puebla 72810, Mexico
Juan Hugo García-López
Dynamical Systems Laboratory, CULagos, Universidad de Guadalajara, Centro Universitario de los Lagos, Enrique Díaz de León 1144, Paseos de la Montaña, Lagos de Moreno 47460, Mexico
Rider Jaimes-Reategui
Dynamical Systems Laboratory, CULagos, Universidad de Guadalajara, Centro Universitario de los Lagos, Enrique Díaz de León 1144, Paseos de la Montaña, Lagos de Moreno 47460, Mexico
Guillermo Huerta-Cuellar
Dynamical Systems Laboratory, CULagos, Universidad de Guadalajara, Centro Universitario de los Lagos, Enrique Díaz de León 1144, Paseos de la Montaña, Lagos de Moreno 47460, Mexico
In this work, the Lotka–Volterra equations where applied to laser physics to describe population inversion and the number of emitted photons. Given that predation and stimulated emissions are analogous processes, two rate equations where obtained by finding suitable parameter transformations for a three-level laser. This resulted in a set of differential equations which are isomorphic to several laser models under accurate parameter identification. Furthermore, the steady state provided two critical points: one where light amplification stops and another where continuous-wave operation is achieved. Lyapunov’s first method of stability yielded the conditions for the convergence to the continuous-wave point, whereas a Lyapunov potential provided its stability regions. Finally, the Q-Switching technique was modeled by introducing a periodic variation of the quality Q of the cavity. This resulted in the transformation of the asymptotically stable fixed point into a limit cycle in the phase space.