Water (Feb 2020)

Performance of Field-Scale Phosphorus Removal Structures Utilizing Steel Slag for Treatment of Subsurface Drainage

  • Chad Penn,
  • Stan Livingston,
  • Vinayak Shedekar,
  • Kevin King,
  • Mark Williams

DOI
https://doi.org/10.3390/w12020443
Journal volume & issue
Vol. 12, no. 2
p. 443

Abstract

Read online

Reducing dissolved phosphorus (P) losses from legacy P soils to surface waters is necessary for preventing algal blooms. Phosphorus removal structures containing steel slag have shown success in treating surface runoff for dissolved P, but little is known about treating subsurface (tile) drainage. A ditch-style and subsurface P removal structure were constructed using steel slag in a bottom-up flow design for treating tile drainage. Nearly 97% of P was delivered during precipitation-induced flow events (as opposed to baseflow) with inflow P concentrations increasing with flow rate. Structures handled flow rates approximately 12 L s−1, and the subsurface and ditch structures removed 19.2 (55%) and 0.9 kg (37%) of the cumulative dissolved P load, respectively. Both structures underperformed relative to laboratory flow-through experiments and exhibited signs of flow inhibition with time. Dissolved P removal decreased dramatically when treated water pH decreased <8.5. Although slag has proven successful for treating surface runoff, we hypothesize that underperformance in this case was due to tile drainage bicarbonate consumption of slag calcium through the precipitation of calcium carbonate, thereby filling pore space, decreasing flow and pH, and preventing calcium phosphate precipitation. We do not recommend non-treated steel slag for removing dissolved P from tile drainage unless slag is replaced every 4−6 months.

Keywords