Journal of Function Spaces and Applications (Jan 2012)
Continuous Characterizations of Besov-Lizorkin-Triebel Spaces and New Interpretations as Coorbits
Abstract
We give characterizations for homogeneous and inhomogeneous Besov-Lizorkin-Triebel spaces (H. Triebel 1983, 1992, and 2006) in terms of continuous local means for the full range of parameters. In particular, we prove characterizations in terms of Lusin functions (tent spaces) and spaces involving the Peetre maximal function to apply the classical coorbit space theory according to Feichtinger and Gröchenig (H. G Feichtinger and K. Gröchenig 1988, 1989, and 1991). This results in atomic decompositions and wavelet bases for homogeneous spaces. In particular we give sufficient conditions for suitable wavelets in terms of moment, decay and smoothness conditions.