Bifunctional Tm<sup>3+</sup>,Yb<sup>3+</sup>:GdVO<sub>4</sub>@SiO<sub>2</sub> Core-Shell Nanoparticles in HeLa Cells: Upconversion Luminescence Nanothermometry in the First Biological Window and Biolabelling in the Visible
Oleksandr Savchuk,
Joan Josep Carvajal Marti,
Concepción Cascales,
Patricia Haro-Gonzalez,
Francisco Sanz-Rodríguez,
Magdalena Aguilo,
Francesc Diaz
Affiliations
Oleksandr Savchuk
Fisica i Cristalografia de Materials i Nanomaterials (FiCMA-FiCNA)−EMaS, Universitat Rovira I Virgili (URV), Campus Sescelades, Marcelli Domingo 1, E-43007 Tarragona, Spain
Joan Josep Carvajal Marti
Fisica i Cristalografia de Materials i Nanomaterials (FiCMA-FiCNA)−EMaS, Universitat Rovira I Virgili (URV), Campus Sescelades, Marcelli Domingo 1, E-43007 Tarragona, Spain
Concepción Cascales
Instituto de Ciencia de Materiales de Madrid, Calle Sor Juana Ines de la Cruz, Cantoblanco, 28049 Madrid, Spain
Patricia Haro-Gonzalez
Fluorescence Imaging Group, Departamento de Fisica de Materiales, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
Francisco Sanz-Rodríguez
Fluorescence Imaging Group, Departamento de Fisica de Materiales, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
Magdalena Aguilo
Fisica i Cristalografia de Materials i Nanomaterials (FiCMA-FiCNA)−EMaS, Universitat Rovira I Virgili (URV), Campus Sescelades, Marcelli Domingo 1, E-43007 Tarragona, Spain
Francesc Diaz
Fisica i Cristalografia de Materials i Nanomaterials (FiCMA-FiCNA)−EMaS, Universitat Rovira I Virgili (URV), Campus Sescelades, Marcelli Domingo 1, E-43007 Tarragona, Spain
The bifunctional possibilities of Tm,Yb:GdVO4@SiO2 core-shell nanoparticles for temperature sensing by using the near-infrared (NIR)-excited upconversion emissions in the first biological window, and biolabeling through the visible emissions they generate, were investigated. The two emission lines located at 700 and 800 nm, that arise from the thermally coupled 3F2,3 and 3H4 energy levels of Tm3+, were used to develop a luminescent thermometer, operating through the Fluorescence Intensity Ratio (FIR) technique, with a very high thermal relative sensitivity. Moreover, since the inert shell surrounding the luminescent active core allows for dispersal of the nanoparticles in water and biological compatible fluids, we investigated the penetration depth that can be realized in biological tissues with their emissions in the NIR range, achieving a value of 0.8 mm when excited at powers of 50 mW. After their internalization in HeLa cells, a low toxicity was observed and the potentiality for biolabelling in the visible range was demonstrated, which facilitated the identification of the location of the nanoparticles inside the cells, and the temperature determination.