PeerJ (Oct 2021)

Transcriptomic analysis reveals candidate genes for male sterility in Prunus sibirica

  • Jianhua Chen,
  • Hao Xu,
  • Jian Zhang,
  • Shengjun Dong,
  • Quangang Liu,
  • Ruoxi Wang

DOI
https://doi.org/10.7717/peerj.12349
Journal volume & issue
Vol. 9
p. e12349

Abstract

Read online Read online

Background The phenomenon of male sterility widely occurs in Prunus sibirica and has a serious negative impact on yield. We identified the key stage and cause of male sterility and found differentially expressed genes related to male sterility in Prunus sibirica, and we analyzed the expression pattern of these genes. This work aimed to provide valuable reference and theoretical basis for the study of reproductive development and the mechanisms of male sterility in Prunus sibirica. Method The microstructures of male sterile flower buds and male fertile flower buds were observed by paraffin section. Transcriptome sequencing was used to screen genes related to male sterility in Prunus sibirica. Quantitative real-time PCR analysis was performed to verify the transcriptome data. Results Anther development was divided into the sporogenous cell stage, tetrad stage, microspore stage, and pollen maturity stage. Compared with male fertile flower buds, in the microspore stage, the pollen sac wall tissue in the male sterile flower buds showed no signs of degeneration. In the pollen maturity stage, the tapetum and middle layer were not fully degraded, and anther development stopped. Therefore, the microspore stage was the key stage for anther abortion , and the pollen maturity stage was the post stage for anther abortion. A total of 4,108 differentially expressed genes were identified by transcriptome analysis. Among them, 1,899 were up-regulated, and 2,209 were down-regulated in the transcriptome of male sterile flower buds. We found that “protein kinase activity”, “apoptosis process”, “calcium binding”, “cell death”, “cytochrome c oxidase activity”, “aspartate peptidase activity”, “cysteine peptidase activity” and other biological pathways such as “starch and sucrose metabolism” and “proteasome” were closely related to male sterility in Prunus sibirica. A total of 331 key genes were preliminarily screened. Conclusion The occurrence of male sterility in Prunus sibirica involved many biological processes and metabolic pathways. According to the results of microstructure observations, related physiological indexes determination and transcriptome analysis, we reveal that the occurrence of male sterility in Prunus sibirica may be caused by abnormal metabolic processes such as the release of cytochrome c in the male sterile flower buds, the imbalance of the antioxidant system being destroyed, and the inability of macromolecular substances such as starch to be converted into soluble small molecules at the correct stage of reproductive development, resulting in energy loss. As a result, the tapetum cannot be fully degraded, thereby blocking anther development, which eventually led to the formation of male sterility.

Keywords