Biotechnology for Biofuels (Nov 2017)

A novel GH10 xylanase from Penicillium sp. accelerates saccharification of alkaline-pretreated bagasse by an enzyme from recombinant Trichoderma reesei expressing Aspergillus β-glucosidase

  • Nozomu Shibata,
  • Mari Suetsugu,
  • Hiroshi Kakeshita,
  • Kazuaki Igarashi,
  • Hiroshi Hagihara,
  • Yasushi Takimura

DOI
https://doi.org/10.1186/s13068-017-0970-2
Journal volume & issue
Vol. 10, no. 1
pp. 1 – 17

Abstract

Read online

Abstract Background Trichoderma reesei is considered a candidate fungal enzyme producer for the economic saccharification of cellulosic biomass. However, performance of the saccharifying enzymes produced by T. reesei is insufficient. Therefore, many attempts have been made to improve its performance by heterologous protein expression. In this study, to increase the conversion efficiency of alkaline-pretreated bagasse to sugars, we conducted screening of biomass-degrading enzymes that showed synergistic effects with enzyme preparations produced by recombinant T. reesei. Results Penicillium sp. strain KSM-F532 produced the most effective enzyme to promote the saccharification of alkaline-pretreated bagasse. Biomass-degrading enzymes from strain KSM-F532 were fractionated and analyzed, and a xylanase, named PspXyn10, was identified. The amino acid sequence of PspXyn10 was determined by cDNA analysis: the enzyme shows a modular structure consisting of glycoside hydrolase family 10 (GH10) and carbohydrate-binding module family 1 (CBM1) domains. Purified PspXyn10 was prepared from the supernatant of a recombinant T. reesei strain. The molecular weight of PspXyn10 was estimated to be 55 kDa, and its optimal temperature and pH for xylanase activity were 75 °C and pH 4.5, respectively. More than 80% of the xylanase activity was maintained at 65 °C for 10 min. With beechwood xylan as the substrate, the enzyme had a K m of 2.2 mg/mL and a V max of 332 μmol/min/mg. PspXyn10ΔCBM, which lacked the CBM1 domain, was prepared by limited proteolysis. PspXyn10ΔCBM showed increased activity against soluble xylan, but decreased saccharification efficiency of alkaline-pretreated bagasse. This result indicated that the CBM1 domain of PspXyn10 contributes to the enhancement of the saccharification efficiency of alkaline-pretreated bagasse. A recombinant T. reesei strain, named X2PX10, was constructed from strain X3AB1. X3AB1 is an Aspergillus aculeatus β-glucosidase-expressing T. reesei PC-3-7. X2PX10 also expressed PspXyn10 under the control of the xyn2 promoter. An enzyme preparation from X2PX10 showed almost the same saccharification efficiency of alkaline-pretreated bagasse at half the enzyme dosage as that used for an enzyme preparation from X3AB1. Conclusions Our results suggest that PspXyn10 promotes the saccharification of alkaline-pretreated bagasse more efficiently than TrXyn3, a GH10 family xylanase from T. reesei, and that the PspXyn10-expressing strain is suitable for enzyme production for biomass saccharification.

Keywords