Gels (Nov 2023)
Adsorption of Safranin O Dye by Alginate/Pomegranate Peels Beads: Kinetic, Isotherm and Thermodynamic Studies
Abstract
Water pollution is regarded as a dangerous problem that needs to be resolved right away. This is largely due to the positive correlation between the increase in global population and waste production, especially food waste. Hydrogel beads based on sodium alginate (Alg) and pomegranate fruit peels (PP) were developed for the adsorption of Safranin O dye (SO) in aqueous solutions. The obtained Alg−PP beads were widely characterized. The effects of the contact time (0–180 min), initial concentration (10–300 mg/L), initial pH (2–10), adsorbent dosage (1–40 g/L) and the temperature (293–333 K) were investigated through batch tests. The data proved that the adsorption kinetics of SO reached equilibrium within 30 min and up to 180 min. The dye adsorption is concentration dependent while a slight effect of pH was observed. The adsorption data of SO onto synthesized beads follow the pseudo second-order model. The experimental data fitted very well to Langmuir model with correlation factor of 0.92 which demonstrated the favourable nature of adsorption. The maximum adsorption capacity of Alg−PP could reach 30.769 mg/g at 293 K. Calculation of Gibbs free energy and enthalpy indicated that adsorption of SO onto Alg−PP is spontaneous (negative ΔG) and endothermic (ΔH = 9.30 kJ/mol). Analysis of diffusion and mass transport phenomena were presented. The removal efficiency was found to be 88% at the first cycle and decreased to 71% at the end of the seventh cycle. The reported results revealed that the Alg−PP beads could be used as a novel natural adsorbent for the removal of high concentrated solutions of Safranin O which is a cationic dye from liquid affluents and as future perspective, it can be used to remove various pollutants from wastewater.
Keywords