Journal of Ovarian Research (Aug 2024)
The molecular prognostic score, a classifier for risk stratification of high-grade serous ovarian cancer
Abstract
Abstract Background The clinicopathological parameters such as residual tumor, grade, the International Federation of Gynecology and Obstetrics (FIGO) score are often used to predict the survival of ovarian cancer patients, but the 5-year survival of high grade serous ovarian cancer (HGSOC) still remains around 30%. Hence, the relentless pursuit of enhanced prognostic tools for HGSOC, this study introduces an unprecedented gene expression-based molecular prognostic score (mPS). Derived from a novel 20-gene signature through Least Absolute Shrinkage and Selection Operator (LASSO)-Cox regression, the mPS stands out for its predictive prowess. Results Validation across diverse datasets, including training and test sets (n = 491 each) and a large HGSOC patient cohort from the Ovarian Tumor Tissue Analysis (OTTA) consortium (n = 7542), consistently shows an area-under-curve (AUC) around 0.7 for predicting 5-year overall survival. The mPS’s impact on prognosis resonates profoundly, yielding an adjusted hazard-ratio (HR) of 6.1 (95% CI: 3.65–10.3; p < 0.001), overshadowing conventional parameters—FIGO score, residual disease, and age. Molecular insights gleaned from mPS stratification uncover intriguing pathways, with focal-adhesion, Wnt, and Notch signaling upregulated, and antigen processing and presentation downregulated (p < 0.001) in high-risk HGSOC cohorts. Conclusion Positioned as a robust prognostic marker, the 20-gene signature-derived mPS emerges as a potential game-changer in clinical settings. Beyond its role in predicting overall survival, its implications extend to guiding alternative therapies, especially targeting Wnt/Notch signaling pathways and immune evasion—a promising avenue for improving outcomes in high-risk HGSOC patients.
Keywords