BMC Musculoskeletal Disorders (Apr 2024)

Harnessing ResNet50 and SENet for enhanced ankle fracture identification

  • Hua Wang,
  • Jichong Ying,
  • Jianlei Liu,
  • Tianming Yu,
  • Dichao Huang

DOI
https://doi.org/10.1186/s12891-024-07355-8
Journal volume & issue
Vol. 25, no. 1
pp. 1 – 11

Abstract

Read online

Abstract Background Ankle fractures are prevalent injuries that necessitate precise diagnostic tools. Traditional diagnostic methods have limitations that can be addressed using machine learning techniques, with the potential to improve accuracy and expedite diagnoses. Methods We trained various deep learning architectures, notably the Adapted ResNet50 with SENet capabilities, to identify ankle fractures using a curated dataset of radiographic images. Model performance was evaluated using common metrics like accuracy, precision, and recall. Additionally, Grad-CAM visualizations were employed to interpret model decisions. Results The Adapted ResNet50 with SENet capabilities consistently outperformed other models, achieving an accuracy of 93%, AUC of 95%, and recall of 92%. Grad-CAM visualizations provided insights into areas of the radiographs that the model deemed significant in its decisions. Conclusions The Adapted ResNet50 model enhanced with SENet capabilities demonstrated superior performance in detecting ankle fractures, offering a promising tool to complement traditional diagnostic methods. However, continuous refinement and expert validation are essential to ensure optimal application in clinical settings.

Keywords