Frontiers in Physiology (Apr 2021)

The Maximal Lactate Steady State Workload Determines Individual Swimming Performance

  • Gernot O. Hering,
  • Jens Stepan,
  • Jens Stepan

DOI
https://doi.org/10.3389/fphys.2021.668123
Journal volume & issue
Vol. 12

Abstract

Read online

The lactate threshold (LT) and the strongly related maximal lactate steady state workload (MLSSW) are critical for physical endurance capacity and therefore of major interest in numerous sports. However, their relevance to individual swimming performance is not well understood. We used a custom-made visual light pacer for real-time speed modulation during front crawl to determine the LT and MLSSW in a single-exercise test. When approaching the LT, we found that minute variations in swimming speed had considerable effects on blood lactate concentration ([La−]). The LT was characterized by a sudden increase in [La−], while the MLSSW occurred after a subsequent workload reduction, as indicated by a rapid cessation of blood lactate accumulation. Determination of the MLSSW by this so-called “individual lactate threshold” (ILT)-test was highly reproducible and valid in a constant speed test. Mean swimming speed in 800 and 1,500 m competition (S-Comp) was 3.4% above MLSSW level and S-Comp, and the difference between S-Comp and the MLSSW (Δ S-Comp/MLSSW) were higher for long-distance swimmers (800–1,500 m) than for short- and middle-distance swimmers (50–400 m). Moreover, Δ S-Comp/MLSSW varied significantly between subjects and had a strong influence on overall swimming performance. Our results demonstrate that the MLSSW determines individual swimming performance, reflects endurance capacity in the sub- to supra-threshold range, and is therefore appropriate to adjust training intensity in moderate to severe domains of exercise.

Keywords