Interdisciplinary Materials (Sep 2023)

Realizing high‐energy density for practical lithium–sulfur batteries

  • Ruopian Fang,
  • Ke Chen,
  • Zhenhua Sun,
  • Guangjian Hu,
  • Da‐Wei Wang,
  • Feng Li

DOI
https://doi.org/10.1002/idm2.12118
Journal volume & issue
Vol. 2, no. 5
pp. 761 – 770

Abstract

Read online

Abstract Lithium–sulfur (Li–S) batteries has emerged as a promising post‐lithium‐ion battery technology due to their high potential energy density and low raw material cost. Recent years have witnessed substantial progress in research on Li–S batteries, yet no high‐energy Li–S battery products have reached the market at scale. Achieving high‐energy Li–S batteries necessitates a multidisciplinary approach involving advanced electrode material design, electrochemistry, and electrode and cell engineering. In this perspective, we offer a holistic view of pathways for realizing high‐energy Li–S batteries under practical conditions. Starting with a market outlook for high‐energy batteries, we present a comprehensive quantitative analysis of the critical parameters that dictate the cell‐level energy density for a Li–S battery. Thereby we establish a protocol to expedite the integration of lab‐scale Li–S research results into practical cell. Furthermore, we underscore several key considerations for promotion of commercial viability of high‐energy Li–S batteries from the perspective of battery industrialization.

Keywords