Voltammetric Sensing of Nifedipine Using a Glassy Carbon Electrode Modified with Carbon Nanofibers and Gold Nanoparticles
Anderson M. Santos,
Ademar Wong,
Maria H. A. Feitosa,
Andy A. Cardenas-Riojas,
Sandy L. Calderon-Zavaleta,
Angélica M. Baena-Moncada,
Maria D. P. T. Sotomayor,
Fernando C. Moraes
Affiliations
Anderson M. Santos
Department of Chemistry, Federal University of São Carlos (UFSCar), São Carlos 13560-970, Brazil
Ademar Wong
Institute of Chemistry, São Paulo State University (UNESP), Araraquara 14801-970, Brazil
Maria H. A. Feitosa
Department of Chemistry, Federal University of São Carlos (UFSCar), São Carlos 13560-970, Brazil
Andy A. Cardenas-Riojas
Laboratorio de Investigación de Electroquímica Aplicada, Facultad de Ciencias, Universidad Nacional de Ingeniería, Av. Túpac Amaru 210, Rímac 15333, Peru
Sandy L. Calderon-Zavaleta
Laboratorio de Investigación de Electroquímica Aplicada, Facultad de Ciencias, Universidad Nacional de Ingeniería, Av. Túpac Amaru 210, Rímac 15333, Peru
Angélica M. Baena-Moncada
Laboratorio de Investigación de Electroquímica Aplicada, Facultad de Ciencias, Universidad Nacional de Ingeniería, Av. Túpac Amaru 210, Rímac 15333, Peru
Maria D. P. T. Sotomayor
Institute of Chemistry, São Paulo State University (UNESP), Araraquara 14801-970, Brazil
Fernando C. Moraes
Department of Chemistry, Federal University of São Carlos (UFSCar), São Carlos 13560-970, Brazil
Nifedipine, a widely utilized medication, plays a crucial role in managing blood pressure in humans. Due to its global prevalence and extensive usage, close monitoring is necessary to address this widespread concern effectively. Therefore, the development of an electrochemical sensor based on a glassy carbon electrode modified with carbon nanofibers and gold nanoparticles in a Nafion® film was performed, resulting in an active electrode surface for oxidation of the nifedipine molecule. This was applied, together with a voltammetric methodology, for the analysis of nifedipine in biological and environmental samples, presenting a linear concentration range from 0.020 to 2.5 × 10−6 µmol L−1 with a limit of detection 2.8 nmol L−1. In addition, it presented a good recovery analysis in the complexity of the samples, a low deviation in the presence of interfering potentials, and good repeatability between measurements.