PLoS ONE (Jan 2012)
Fucoidan from seaweed Fucus vesiculosus inhibits migration and invasion of human lung cancer cell via PI3K-Akt-mTOR pathways.
Abstract
BACKGROUND: Recently there has been an increased interest in the pharmacologically active natural products associated with remedies of various kinds of diseases, including cancer. Fucoidan is a polysaccharide derived from brown seaweeds and has long been used as an ingredient in some dietary supplement products. Although fucoidan has been known to have anti-cancer activity, the anti-metastatic effects and its detailed mechanism of actions have been poorly understood. Therefore, the aims of this study were to demonstrate the anti-metastatic functions of fucoidan and its mechanism of action using A549, a highly metastatic human lung cancer cell line. METHODS AND PRINCIPAL FINDINGS: Fucoidan inhibits the growth of A549 cells at the concentration of 400 µg/ml. Fucoidan treatment of non-toxic dose (0-200 µg/ml) exhibits a concentration-dependent inhibitory effect on the invasion and migration of the cancer cell via decreasing its MMP-2 activity. To know the mechanism of these inhibitory effects, Western blotting was performed. Fucoidan treatment down-regulates extracellular signal-related kinase 1 and 2 (ERK1/2) and phosphoinositide 3-kinase (PI3K)-Akt-mammalian target of rapamycin (PI3K-Akt-mTOR) pathways. Furthermore, fucoidan decreases the cytosolic and nuclear levels of Nuclear Factor-kappa B (p65). CONCLUSIONS/SIGNIFICANCE: The present study suggests that fucoidan exhibits anti-metastatic effect on A549 lung cancer cells via the down-regulation of ERK1/2 and Akt-mTOR as well as NF-kB signaling pathways. Hence, fucoidan can be considered as a potential therapeutic reagent against the metastasis of invasive human lung cancer cells.