BMC Cancer (Oct 2022)

Distribution of microbiota in cervical preneoplasia of racially disparate populations

  • Kunwar Somesh Vikramdeo,
  • Shashi Anand,
  • Jennifer Young Pierce,
  • Ajay Pratap Singh,
  • Seema Singh,
  • Santanu Dasgupta

DOI
https://doi.org/10.1186/s12885-022-10112-6
Journal volume & issue
Vol. 22, no. 1
pp. 1 – 9

Abstract

Read online

Abstract Backgrounds Microbiome dysbiosis is an important contributing factor in tumor development and thus may be a risk predictor for human malignancies. In the United States, women with Hispanic/Latina (HIS) and African American (AA) background have a higher incidence of cervical cancer and poorer outcomes than Caucasian American (CA) women. Methods Here, we assessed the distribution pattern of microbiota in cervical intraepithelial neoplasia (CIN) lesions obtained from HIS (n = 12), AA (n = 12), and CA (n = 12) women, who were screened for CC risk assessment. We employed a 16S rRNA gene sequencing approach adapted from the NIH-Human Microbiome Project to identify the microbial niche in all CIN lesions (n = 36). Results We detected an appreciably decreased abundance of beneficial Lactobacillus in the CIN lesions of the AA and HIS women compared to the CA women. Differential abundance of potentially pathogenic Prevotella, Delftia, Gardnerella, and Fastidiosipila was also evident among the various racial groups. An increased abundance of Micrococcus was also evident in AA and HIS women compared to the CA women. The detection level of Rhizobium was higher among the AA ad CA women compared to the HIS women. In addition to the top 10 microbes, a unique niche of 27 microbes was identified exclusively in women with a histopathological diagnosis of CIN. Among these microbes, a group of 8 microbiota; Rubellimicrobium, Podobacter, Brevibacterium, Paracoccus, Atopobium, Brevundimonous, Comamonous, and Novospingobium was detected only in the CIN lesions obtained from AA and CA women. Conclusions Microbial dysbiosis in the cervical epithelium represented by an increased ratio of potentially pathogenic to beneficial microbes may be associated with increased CC risk disparities. Developing a race-specific reliable panel of microbial markers could be beneficial for CC risk assessment, disease prevention, and/or therapeutic guidance.

Keywords