Frontiers in Neuroscience (Jun 2021)

DeepNavNet: Automated Landmark Localization for Neuronavigation

  • Christine A. Edwards,
  • Christine A. Edwards,
  • Christine A. Edwards,
  • Abhinav Goyal,
  • Abhinav Goyal,
  • Aaron E. Rusheen,
  • Aaron E. Rusheen,
  • Abbas Z. Kouzani,
  • Kendall H. Lee,
  • Kendall H. Lee,
  • Kendall H. Lee,
  • Kendall H. Lee

DOI
https://doi.org/10.3389/fnins.2021.670287
Journal volume & issue
Vol. 15

Abstract

Read online

Functional neurosurgery requires neuroimaging technologies that enable precise navigation to targeted structures. Insufficient image resolution of deep brain structures necessitates alignment to a brain atlas to indirectly locate targets within preoperative magnetic resonance imaging (MRI) scans. Indirect targeting through atlas-image registration is innately imprecise, increases preoperative planning time, and requires manual identification of anterior and posterior commissure (AC and PC) reference landmarks which is subject to human error. As such, we created a deep learning-based pipeline that consistently and automatically locates, with submillimeter accuracy, the AC and PC anatomical landmarks within MRI volumes without the need for an atlas. Our novel deep learning pipeline (DeepNavNet) regresses from MRI scans to heatmap volumes centered on AC and PC anatomical landmarks to extract their three-dimensional coordinates with submillimeter accuracy. We collated and manually labeled the location of AC and PC points in 1128 publicly available MRI volumes used for training, validation, and inference experiments. Instantiations of our DeepNavNet architecture, as well as a baseline model for reference, were evaluated based on the average 3D localization errors for the AC and PC points across 311 MRI volumes. Our DeepNavNet model significantly outperformed a baseline and achieved a mean 3D localization error of 0.79 ± 0.33 mm and 0.78 ± 0.33 mm between the ground truth and the detected AC and PC points, respectively. In conclusion, the DeepNavNet model pipeline provides submillimeter accuracy for localizing AC and PC anatomical landmarks in MRI volumes, enabling improved surgical efficiency and accuracy.

Keywords