Nanomaterials (Jun 2021)

Design and Characterization of a Novel ZnO–Ag/Polypyrrole Core–Shell Nanocomposite for Water Bioremediation

  • Fatma Mohamed,
  • Abeer Enaiet Allah,
  • Khulood A. Abu Al-Ola,
  • Mohamed Shaban

DOI
https://doi.org/10.3390/nano11071688
Journal volume & issue
Vol. 11, no. 7
p. 1688

Abstract

Read online

Incorporating nanostructured metal and metal oxide in a polymer matrix is a strategic way to develop a novel candidate for water bioremediation. In this study, under microwave irradiation, a ZnO–Ag/polypyrrole (PPy) nanocomposite with a core/shell structure was prepared by interfacial polymerization of pyrrole in the presence of ZnO nanoparticles and AgNO3 as an oxidant. The antimicrobial behavior of the ZnO–Ag core combined with the electrical properties of the conducting PPy shell created a special ZnO–Ag/PPy nanocomposite with inherent adsorption behavior and antimicrobial properties. More impressively, the as-prepared ZnO–Ag/PPy displayed enhanced adsorption of Cd2+ and PO43− ions in the mixed solution. At pH 8, it had overall removal efficiencies of 95% and 75% for Cd2+and PO43− ions, respectively. The Freundlich adsorption model, rather than the Langmuir adsorption model, better fits the adsorption isotherm results. The adsorption kinetics also followed the pseudo-second-order kinetic model. Additionally, the engineered nanocomposite demonstrated antifungal activity against different fungi, as well as remarkable antibacterial activity against Gram-negative and Gram-positive bacteria. The synergistic combination of crystallinity, coherence of the ZnO–Ag core in the PPy matrix, and the negative zeta potential all contribute to this nanocomposite’s high efficiency. Our results have significant consequences in the wastewater bioremediation field using a simple operation process.

Keywords