Ecotoxicology and Environmental Safety (Apr 2022)

Combination of UNMIX, PMF model and Pb-Zn-Cu isotopic compositions for quantitative source apportionment of heavy metals in suburban agricultural soils

  • Zhifan Chen,
  • Yongfeng Ding,
  • Xingyuan Jiang,
  • Haijing Duan,
  • Xinling Ruan,
  • Zhihong Li,
  • Yipeng Li

Journal volume & issue
Vol. 234
p. 113369

Abstract

Read online

Quantitative identification of heavy metals (HM) sources in soils is key to prevention and control of heavy metal pollution. In this study, UNMIX, PMF (Positive matrix factorization) model and Pb-Zn-Cu isotopic compositions were combined to quantitatively identify heavy metal sources in a suburban agricultural area of Kaifeng, China. Using multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS) and ICP-MS, we measured Pb, Zn and Cu stable isotopic compositions, HM concentrations and HM chemical fractions in studied soils, as well as potential sources around the highly polluted site, including total suspended particle, compound fertilizer, irrigated river water and sediments. The results showed that total contents and chemical fractions of heavy metals, as well as Pb-Zn-Cu isotopic compositions presented great variation in different sites, which implied that heavy metal accumulation was obviously affected by local anthropogenic pollution source. UNMIX and PMF presented good agreement on source apportionment that industrial and agricultural activities (61.74% and 60.75% for UNMIX and PMF, respectively) were the major contributors to heavy metal accumulation in the study area. Especially, sewage irrigation and atmosphere deposition accounted for a large proportion (28.14% and 41.03% for UNMIX and PMF, respectively). Moreover, isotopic compositions of Pb, Zn and Cu in highly polluted soils and environment media gave further confirmation that sewage irrigation and atmosphere deposition were primary anthropogenic source. Therefore, combination of UNMIX, PMF model and Pb-Zn-Cu isotopic compositions showed good coordination in quantitative and specific source identification of heavy metals in agricultural soils.

Keywords