PLoS ONE (Jan 2011)

Intrapopulation variability shaping isotope discrimination and turnover: experimental evidence in arctic foxes.

  • Nicolas Lecomte,
  • Oystein Ahlstrøm,
  • Dorothée Ehrich,
  • Eva Fuglei,
  • Rolf A Ims,
  • Nigel G Yoccoz

DOI
https://doi.org/10.1371/journal.pone.0021357
Journal volume & issue
Vol. 6, no. 6
p. e21357

Abstract

Read online

Tissue-specific stable isotope signatures can provide insights into the trophic ecology of consumers and their roles in food webs. Two parameters are central for making valid inferences based on stable isotopes, isotopic discrimination (difference in isotopic ratio between consumer and its diet) and turnover time (renewal process of molecules in a given tissue usually measured when half of the tissue composition has changed). We investigated simultaneously the effects of age, sex, and diet types on the variation of discrimination and half-life in nitrogen and carbon stable isotopes (δ¹⁵N and δ¹³C, respectively) in five tissues (blood cells, plasma, muscle, liver, nail, and hair) of a top predator, the arctic fox Vulpes lagopus.We fed 40 farmed foxes (equal numbers of adults and yearlings of both sexes) with diet capturing the range of resources used by their wild counterparts. We found that, for a single species, six tissues, and three diet types, the range of discrimination values can be almost as large as what is known at the scale of the whole mammalian or avian class. Discrimination varied depending on sex, age, tissue, and diet types, ranging from 0.3‰ to 5.3‰ (mean = 2.6‰) for δ¹⁵N and from 0.2‰ to 2.9‰ (mean = 0.9‰) for δ¹³C. We also found an impact of population structure on δ¹⁵N half-life in blood cells. Varying across individuals, δ¹⁵N half-life in plasma (6 to 10 days) was also shorter than for δ¹³C (14 to 22 days), though δ¹⁵N and δ¹³C half-lives are usually considered as equal.Overall, our multi-factorial experiment revealed that at least six levels of isotopic variations could co-occur in the same population. Our experimental analysis provides a framework for quantifying multiple sources of variation in isotopic discrimination and half-life that needs to be taken into account when designing and analysing ecological field studies.