Materials (May 2020)

Al<sub>x</sub>In<sub>1−x</sub>N on Si (100) Solar Cells (x = 0–0.56) Deposited by RF Sputtering

  • Sirona Valdueza-Felip,
  • Rodrigo Blasco,
  • Javier Olea,
  • Alba Díaz-Lobo,
  • Alejandro F. Braña,
  • Fernando B. Naranjo

DOI
https://doi.org/10.3390/ma13102336
Journal volume & issue
Vol. 13, no. 10
p. 2336

Abstract

Read online

We investigate the photovoltaic performance of solar cells based on n-AlxIn1−xN (x = 0–0.56) on p-Si (100) hetero-junctions deposited by radio frequency sputtering. The AlxIn1−xN layers own an optical bandgap absorption edge tuneable from 1.73 eV to 2.56 eV within the Al content range. This increase of Al content results in more resistive layers (≈10−4–1 Ω·cm) while the residual carrier concentration drops from ~1021 to ~1019 cm−3. As a result, the top n-contact resistance varies from ≈10−1 to 1 MΩ for InN to Al0.56In0.44N-based devices, respectively. Best results are obtained for devices with 28% Al that exhibit a broad external quantum efficiency covering the full solar spectrum with a maximum of 80% at 750 nm, an open-circuit voltage of 0.39 V, a short-circuit current density of 17.1 mA/cm2 and a conversion efficiency of 2.12% under air mass 1.5 global (AM1.5G) illumination (1 sun), rendering them promising for novel low-cost III-nitride on Si photovoltaic devices. For Al contents above 28%, the electrical performance of the structures lessens due to the high top-contact resistivity.

Keywords