Avian Conservation and Ecology (Dec 2020)

A monitoring framework for assessing threats to nonbreeding shorebirds on the Pacific Coast of the Americas

  • Matthew E. Reiter,
  • Eduardo Palacios,
  • Diana Eusse-Gonzalez,
  • Richard Johnston González,
  • Pete Davidson,
  • David W. Bradley,
  • Rob Clay,
  • Khara M. Strum,
  • James Chu,
  • Blake A. Barbaree,
  • Catherine M. Hickey,
  • David B. Lank,
  • Mark Drever,
  • Ronald C. Ydenberg,
  • Robert Butler

Journal volume & issue
Vol. 15, no. 2
p. 7

Abstract

Read online

Many shorebirds (Order: Charadriiformes; Family: Charadriidae, Recurvirostridae, Scolopacidae, Haematopodidae, Jacanidae) are highly migratory, traversing thousands of kilometers between high latitude breeding and low latitude nonbreeding sites. In doing so, they are dependent on networks of coastal and interior wetland ecosystems. To aid in the effective conservation and management of their populations, and to assess the impact of threats facing shorebirds, standardized data on shorebird abundance are needed from multiple sites representing a gradient of conditions across the hemisphere. Such data would provide insight on whether fluctuations at one location represent real changes in abundance because of some localized threat, or whether other factors acting across broader scales such as the redistribution of predators, are responsible. We designed the Migratory Shorebird Project (MSP), now implemented in 11 countries along the Pacific Coast of the Americas, to characterize spatial and temporal variation in shorebird abundance, to understand which factors (habitat, threats) most influence their populations across the flyway, and to increase capacity for integrated research, monitoring, and conservation. We used bird inventory data from historical surveys and spatial data on habitat distribution along with a set of hypotheses about important threats to guide the design of the project and to identify data requirements to test hypotheses. We counted birds one time per year at 84 nonbreeding sites (~1400 sampling units) between 15 November and 15 February, when shorebirds were relatively stationary. In each of the first three annual counts from 2013/14 to 2015/16, the Migratory Shorebird Project counted ~1M shorebirds representing 44 species, including five species for which > 20% of the estimated biogeographic population was recorded annually, and nine additional species with > 5% recorded annually. The magnitude of variability in estimates of shorebird abundance was inversely correlated with survey effort with the most uncertainty, and lowest survey effort, in the South Temperate region followed by the Neotropical region (southern Mexico to northern Peru) and then the North Temperate region. Evaluation of variance highlighted both among-site and among-unit ("units" are nested within sites) variation in bird abundance and cover types as well as threats such as potential disturbance and predator abundance. Overall, shorebird density was significantly, and positively, associated with the area (ha) of intertidal mudflats, beaches, and aquaculture. Survey units with intermediate levels of bare ground and flooding had the highest shorebird density. As for threats, we found, contrary to our hypothesis, that shorebird abundance was significantly, and positively, associated, with the density of Peregrine Falcons (Falco peregrinus); however we found no relationship between shorebird abundance and the amount of urban development, our index to potential human disturbance, in the surrounding landscape. The Migratory Shorebird Project is providing an essential data foundation and network for increased knowledge of the factors affecting shorebirds across the Pacific Coast of the Americas and identifying what and where conservation actions could have the greatest impact.

Keywords