Frontiers in Human Neuroscience (Mar 2012)

Desynchronizing Electrical and Sensory Coordinated Reset Neuromodulation

  • Oleksandr V. Popovych,
  • Peter A. Tass,
  • Peter A. Tass

DOI
https://doi.org/10.3389/fnhum.2012.00058
Journal volume & issue
Vol. 6

Abstract

Read online

Coordinated reset (CR) stimulation is a desynchronizing stimulation technique based on timely coordinated phase resets of sub-populations of a synchronized neuronal ensemble. It has initially been computationally developed for electrical deep brain stimulation (DBS),to enable an effective desynchronization and unlearning of pathological synchrony and connectivity (anti-kindling). Here we computationally show for ensembles of spiking and bursting model neurons interacting via excitatory and inhibitory adaptive synapses that a phase reset of neuronal populations as well as a desynchronization and an anti-kindling can robustly be achieved by direct electrical stimulation or indirect (synaptically-mediated) excitatory and inhibitory stimulation.Our findings are relevant for DBS as well as for sensory stimulation in neurological disorders characterized by pathological neuronalsynchrony. Based on the obtained results, we may expect that the local effects in the vicinity of a depth electrode (realized by direct stimulation of the neurons' somata or stimulation of axon terminals) and the non-local CR effects (realized by stimulation of excitatory or inhibitory efferent fibers) of deep brain CR neuromodulation may be similar or even identical. Furthermore, ourresults indicate that an effective desynchronization and anti-kindlingcan even be achieved by non-invasive, sensory CR neuromodulation. We discuss the concept of sensory CR neuromodulation in the context of neurological disorders.

Keywords