PLoS ONE (Jan 2023)

Geospatial based model for malaria risk prediction in Kilombero valley, South-eastern, Tanzania.

  • Stephen P Mwangungulu,
  • Deus Dorothea,
  • Zakaria R Ngereja,
  • Emmanuel W Kaindoa

DOI
https://doi.org/10.1371/journal.pone.0293201
Journal volume & issue
Vol. 18, no. 10
p. e0293201

Abstract

Read online

BackgroundMalaria continues to pose a major public health challenge in tropical regions. Despite significant efforts to control malaria in Tanzania, there are still residual transmission cases. Unfortunately, little is known about where these residual malaria transmission cases occur and how they spread. In Tanzania for example, the transmission is heterogeneously distributed. In order to effectively control and prevent the spread of malaria, it is essential to understand the spatial distribution and transmission patterns of the disease. This study seeks to predict areas that are at high risk of malaria transmission so that intervention measures can be developed to accelerate malaria elimination efforts.MethodsThis study employs a geospatial based model to predict and map out malaria risk area in Kilombero Valley. Environmental factors related to malaria transmission were considered and assigned valuable weights in the Analytic Hierarchy Process (AHP), an online system using a pairwise comparison technique. The malaria hazard map was generated by a weighted overlay of the altitude, slope, curvature, aspect, rainfall distribution, and distance to streams in Geographic Information Systems (GIS). Finally, the risk map was created by overlaying components of malaria risk including hazards, elements at risk, and vulnerability.ResultsThe study demonstrates that the majority of the study area falls under moderate risk level (61%), followed by the low risk level (31%), while the high malaria risk area covers a small area, which occupies only 8% of the total area.ConclusionThe findings of this study are crucial for developing spatially targeted interventions against malaria transmission in residual transmission settings. Predicted areas prone to malaria risk provide information that will inform decision-makers and policymakers for proper planning, monitoring, and deployment of interventions.