Minerals (May 2023)

Mineralogy and Distribution of REE in Oxidised Ores of the Mount Weld Laterite Deposit, Western Australia

  • Nigel J. Cook,
  • Cristiana L. Ciobanu,
  • Benjamin P. Wade,
  • Sarah E. Gilbert,
  • Robert Alford

DOI
https://doi.org/10.3390/min13050656
Journal volume & issue
Vol. 13, no. 5
p. 656

Abstract

Read online

The Mount Weld rare earth element (REE) deposit, Western Australia, is one of the largest of its type on Earth. Current mining exploits the high-grade weathered goethite-bearing resource that lies above, and which represents the weathering product of a subjacent carbonatite. The mineralogy, petrography, deportment of lanthanides among the different components, and variation in mineral speciation, textures, and chemistry are examined. Microanalysis, involving scanning electron microscope (SEM) imaging, electron probe microanalysis (EPMA) and laser ablation inductively coupled-plasma mass spectrometry (LA-ICP-MS), was conducted on sized fractions of three crushed and ground laterite ore samples from current and planned production, and a representative sample from the underlying carbonatite. High-magnification imaging of particles in laterite samples show that individual REE-bearing phases are fine-grained and extend in size well below the micron-scale. Nanoscale inclusions of REE-phosphates are observed in apatite, Fe-(Mn)-(hydr)oxides, and quartz, among others. These have the appearance, particularly in fluorapatite, of pervasive, ultrafine dusty domains. Apart from the discrete REE minerals and abundant nano- to micron-scale inclusions in gangue, all ore components analysed by LA-ICP-MS contain trace to minor levels of REEs within their structures. This includes apatite, where low levels of REE are confirmed in preserved igneous apatite, but also Fe- and Mn-(hydr)oxides in which concentrations of hundreds, even thousands of ppm are measured. This is significant given that Fe-(Mn)-(hydr)oxides are the most abundant component of the laterite and points to extensive mobility and redistribution of REEs, and especially HREE, during progressive lateritisation. Late-formed minerals, notably tiny grains of cerianite, reflect a shift to oxidising conditions. REE-fluorocarbonates are the main host for REEs in carbonatite and are systematically replaced by hydrated, Ca-bearing REE-phosphates (largely rhabdophane). The latter displays varied compositions but is characteristically enriched in HREE relative to monazite in the same sample. Fine-grained, compositionally heterogeneous rhabdophane is accompanied by minor amounts of other paragenetically late, hydrated phosphates with enhanced MREE/HREE relative to LREE (although still LREE-dominant). Minor, relict xenotime and zircon are significant HREE carriers. Ilmenite and pyrochlore group members contain REE but contribute only negligibly to the overall REE budget. Although the proportions of individual mineral species differ, the chemistry of key ore components are similar in different laterite samples from the current resource. Mineral signatures are, however, subtly different in the lower grade southeastern part of the deposit, including higher concentrations of HREE relative to LREE in monazite, rhabdophane, florencite and Fe-(Mn)-(hydr)oxides.

Keywords