Horticulturae (Jul 2022)
Compost Composition and Application Rate Have a Greater Impact on Spinach Yield and Soil Fertility Benefits Than Feedstock Origin
Abstract
Rapid urbanization results in the accumulation of food wastes that can be composted and diverted from landfills. Previous lab incubations demonstrated that food-based composts can increase soil N relative to manure-based composts, but these benefits were not tested within a crop system. We assessed soil fertility and yield of spinach (Spinacia oleracea L.) grown in two different soils in a greenhouse, comparing two food- and two manure-based composts added at the recommended N rate (101 kg N ha−1). We quantified soil N mineralization and resin-extractable phosphorus, spinach biomass (root and shoot), and crop nutrient concentrations and accumulation. Nitrogen mineralization generally peaked four weeks after application, and one food-based compost (but no manure-based composts) increased soil phosphorus at harvest compared to an unamended control. One manure-based compost and one food-based compost produced a higher yield and greater nitrogen, phosphorus, and potassium accumulation than the unamended control, whereas only the food-based compost increased spinach phosphorus and potassium concentrations. There was a positive relationship between yield and compost inputs of potassium and plant-available nitrogen (especially nitrate), suggesting that potassium inputs may also explain differences observed among composts. Our results suggest that food-based compost provides more nutrients than composts made from cow manure fiber.
Keywords