Communications Materials (Mar 2024)

A conducting polymer-based array with multiplex sensing and drug delivery capabilities for smart bandages

  • Lingyin Meng,
  • Sheng Liu,
  • Baris Ata Borsa,
  • Mats Eriksson,
  • Wing Cheung Mak

DOI
https://doi.org/10.1038/s43246-024-00469-5
Journal volume & issue
Vol. 5, no. 1
pp. 1 – 10

Abstract

Read online

Abstract Effective individual wound management, particularly in cases of prolonged healing and increased infection vulnerability, has prompted the development of wound theranostics, combining real-time diagnostic assessment and on-demand treatment. Here, we present a multifunctional conducting polymer-based smart theranostic bandage that integrates pH sensing, pH-compensated uric acid (UA) biosensing, and on-demand antibiotic release using different conducting polymers, each leveraging their advantageous intrinsic properties. Specifically, the polyaniline-based pH sensor operates reversibly across a pH range of 4–10, while the functionalized poly(3,4-ethylenedioxythiophene)-based UA biosensor exhibits a linear response up to 0.9 mM UA. Simultaneous detection of pH and UA allows accurate UA determination via pH compensation. Upon detecting abnormal pH/UA levels, the polypyrrole-based drug carrier releases ciprofloxacin via 0.6 V electrical stimulation, successfully inhibiting bacterial growth in vitro. The array is assembled as a 3D patch, connected to a flexible printed circuit board, and embedded in a wound bandage, offering potential for remote wound monitoring, targeted treatment, and wireless wound management.