Nature Environment and Pollution Technology (Sep 2024)
Estimation of Surface and Groundwater Interaction by Stable Isotopic Techniques – A Case Study of Chengalpattu District, OMR Region
Abstract
Isotopes are atoms of an element having the same atomic number but different mass numbers. Isotopes in hydrology and water resources are used for identifying its occurrence, movement, residence times, recharge, and discharge process. Stable isotopes of hydrogen(δ2H) and oxygen(δ2O) are used for identifying the surface and groundwater interactions as they constitute hydrogen and oxygen. In this study oxygen and hydrogen stable isotopes are used to identify surface and groundwater interaction in Old Mahabalipuram Road (OMR) regions of Chengalpattu district. The precipitation, lake, surface, and groundwater were collected during pre-monsoon, monsoon, and post-monsoon seasons. The collected sample is analyzed for stable isotopic compositions of oxygen and hydrogen seasonal-wise. The measured stable isotopic compositions during pre-monsoon season of stable oxygen are -4.29 to -2.00 and stable hydrogen are -29.39 to -24.67. The isotopic compositions during monsoon season range from -4.72 to -4.00 and for hydrogen ranges from -29.39 to -23.50. During monsoon season the depletion of isotopic composition is seen and the enrichment of isotopic composition is observed during pre-monsoon season. The variation in stable isotopic composition of oxygen and hydrogen are observed. A Groundwater Water Meteoric Water Line (GMWL) is developed for the study area, and it is compared with a Local Meteoric Water Line (LMWL) for better interpretation of the results. A slight deviation is observed from that of GMWL to LMWL mostly due to isotopic depletion and evaporation effects. From the analysis, a good correlation exists between precipitation and surface water in the study area indicating about recharge mechanism existing in the study area. The groundwater recharge is observed during monsoon seasons and discharge is more towards the pre-monsoon seasons.
Keywords