Sensors (Dec 2018)
A Soft–Hard Combination Decision Fusion Scheme for a Clustered Distributed Detection System with Multiple Sensors
Abstract
In the distributed detection system with multiple sensors, there are two ways for local sensors to deliver their local decisions to the fusion center (FC): a one-bit hard decision and a multiple-bit soft decision. Compared with the soft decision, the hard decision has worse detection performance due to the loss of sensing information but has the main advantage of smaller communication costs. To get a tradeoff between communication costs and detection performance, we propose a soft⁻hard combination decision fusion scheme for the clustered distributed detection system with multiple sensors and non-ideal communication channels. A clustered distributed detection system is configured by a fuzzy logic system and a fuzzy c-means clustering algorithm. In clusters, each local sensor transmits its local multiple-bit soft decision to its corresponding cluster head (CH) under the non-ideal channel, in which a simple and efficient soft decision fusion method is used. Between clusters, the fusion center combines all cluster heads’ one-bit hard decisions into a final global decision by using an optimal fusion rule. We show that the clustered distributed system with the proposed scheme has a good performance that is close to that of the centralized system, but it consumes much less energy than the centralized system at the same time. In addition, the system with the proposed scheme significantly outperforms the conventional distributed detection system that only uses a hard decision fusion. Using simulation results, we also show that the detection performance increases when more bits are delivered in the soft decision in the distributed detection system.
Keywords