Biology (Feb 2024)

11-Deoxycorticosterone (DOC)’s Action on the Gill Osmoregulation of Juvenile Rainbow Trout (<i>Oncorhynchus mykiss</i>)

  • Rodrigo Zuloaga,
  • Luciano Ahumada-Langer,
  • Jorge Eduardo Aedo,
  • Alfredo Molina,
  • Juan Antonio Valdés

DOI
https://doi.org/10.3390/biology13020107
Journal volume & issue
Vol. 13, no. 2
p. 107

Abstract

Read online

In aquaculture, stress can negatively affect fish growth. For years, the cortisol hormone has been thought to play both glucocorticoid and mineralocorticoid functions. Nevertheless, recent research has suggested that 11-deoxycorticosterone (DOC) released during stress could contribute to cortisol actions, though this process is still misunderstood. Here, we evaluated the DOC effects on physiological and early transcriptional responses by RNA-seq. Juvenile rainbow trout were treated with DOC and/or glucocorticoids (mifepristone) or mineralocorticoid (eplerenone) receptor antagonists. Subsequently, plasma was collected, and cDNA libraries were generated from the gills of vehicle (control), DOC, mifepristone, mifepristone with DOC, eplerenone, and eplerenone with DOC groups. Calcium and phosphate levels in plasma were changed. Results revealed 914 differentially expressed transcripts (DETs) induced by DOC compared with control, mainly associated with sodium ion transmembrane transport, gluconeogenesis, negative regulation of transmembrane transport, and activation of innate immune response. DOC versus eplerenone with DOC comparison displayed 444 DETs related to cell-cell junction organization, canonical glycolysis, positive regulation of immune response, and potassium ion transport. Conversely, no DETs were detected in DOC versus mifepristone with DOC comparison. These data suggest that DOC has a relevant role in gill stress response and ion transport, which is differentially regulated by mineralocorticoid receptors.

Keywords