The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences (Aug 2020)

ESTIMATION OF SOIL HEAVY METAL COMBINING FRACTIONAL ORDER DERIVATIVE

  • L. Chen,
  • K. Tan,
  • K. Tan

DOI
https://doi.org/10.5194/isprs-archives-XLIII-B3-2020-1439-2020
Journal volume & issue
Vol. XLIII-B3-2020
pp. 1439 – 1444

Abstract

Read online

It is important for the sustainable development of soil and monitoring the soil quality to obtain the heavy metal contents. Visible and near-infrared (Vis–NIR) spectroscopy provides an alternative method for soil heavy metal estimation. A total of 80 soil samples collected in Xuzhou city of China were utilized as data sets for calibration and validation to establish the relationship between the soil reflectance and soil heavy metal content. To amplify the weak spectral characteristic, improve the estimation ability, and explore the characteristic band regions, the preprocessing method of fractional order derivative (FOD) (intervals of 0.25, range of 0–2) and the wavebands selection method of interval partial least squares regression (IPLS) are introduced in this paper. Combining these two methods, for Chromium (Cr), the best estimation model yields Rp2 and RMSRp values of 0.97 and 2.20, respectively, when fractional order is 0.5. This paper explores the potential that FOD conducts the most appropriate order to preprocess spectra and IPLS selects the feature band regions in estimating soil heavy metal of Cr. The results show that FOD and IPLS can strengthen the soil information and improve the accuracy and stability of soil heavy metal estimation effectively.