Symmetry (Sep 2023)

Controlling of Unmanned Underwater Vehicles Using the Dynamic Planning of Symmetric Trajectory Based on Machine Learning for Marine Resources Exploration

  • Yuriy Kozhubaev,
  • Victor Belyaev,
  • Yuriy Murashov,
  • Oleg Prokofev

DOI
https://doi.org/10.3390/sym15091783
Journal volume & issue
Vol. 15, no. 9
p. 1783

Abstract

Read online

Unmanned underwater vehicles (UUV) are widely used tools in ocean development, which can be applied in areas such as marine scientific research, ocean resources exploration, and ocean security. However, as ocean exploration advances, UUVs face increasingly challenging operational environments with weaker communication signals. Consequently, autonomous obstacle avoidance planning for UUVs becomes increasingly important. With the deepening of ocean exploration, the operational environment of UUVs has become increasingly difficult to access, and the communication signals in the environment have become weaker. Therefore, autonomous obstacle avoidance planning of UUVs has become increasingly important. Traditional dynamic programming methods face challenges in terms of accuracy and real-time performance, requiring the design of auxiliary strategies to achieve ideal avoidance and requiring cumbersome perception equipment to support them. Therefore, exploring an efficient and easy-to-implement dynamic programming method has significant theoretical and practical value. In this study, an LSTM-RNN network structure suitable for UUVs was designed to learn the dynamic programming mode of UUVs in an unknown environment. The research was divided into three main aspects: collecting the required sample dataset for training deep networks, designing the LSTM-RNN network structure, and utilizing LSTM-RNN to achieve dynamic programming. Experimental results demonstrated that LSTM-RNN can learn planning patterns in unknown environments without the need for constructing an environment model or complex perception devices, thus providing significant theoretical and practical value. Consequently, this approach offers an effective solution for autonomous obstacle avoidance planning for UUVs.

Keywords