Reproductive Biology and Endocrinology (Apr 2010)

The effect of calcium phosphate nanoparticles on hormone production and apoptosis in human granulosa cells

  • Gao Li,
  • Chen Zhen,
  • Li Hao,
  • Chen Liang,
  • Cui Yugui,
  • Qin Dingxia,
  • Liu Xiaohui,
  • Li Ying,
  • Liu Jiayin

DOI
https://doi.org/10.1186/1477-7827-8-32
Journal volume & issue
Vol. 8, no. 1
p. 32

Abstract

Read online

Abstract Objectives Although many nanomaterials are being used in academia, industry and daily life, there is little understanding about the effects of nanoparticles on the reproductive health of vertebral animals, including human beings. An experimental study was therefore performed here to explore the effect of calcium phosphate nanoparticles on both steroid hormone production and apoptosis in human ovarian granulosa cells. Methods Calcium phosphate nanoparticles uptaking was evaluated by transmission electron microscopy (TEM). The cell cycle was assessed with propidium iodide-stained cells (distribution of cells in G0/G1, S, and G2/M phases) by flow cytometry. The pattern of cell death (necrosis and apoptosis) was analyzed by flow cytometry with annexin V-FITC/PI staining. The expression of mRNAs encoding P450scc, P450arom and StAR were determined by RT-PCR. Progesterone and estradiol levels were measured by radioimmunoassay. Results TEM results confirmed that calcium phosphate nanoparticles could enter into granulosa cells, and distributed in the membranate compartments, including lysosome and mitochondria and intracellular vesicles. The increased percentage of cells in S phase when cultured with nanoparticles indicated that there was an arrest at the checkpoint from phase S-to-G2/M (from 6.28 +/- 1.55% to 11.18 +/- 1.73%, p Conclusion Calcium phosphate nanoparticles interfered with cell cycle of cultured human ovarian granulosa cells thus increasing cell apoptosis. This pilot study suggested that effects of nanoparticles on ovarian function should be extensively investigated.