An Analysis of the Rice-Cultivation Dynamics in the Lower Utcubamba River Basin Using SAR and Optical Imagery in Google Earth Engine (GEE)
Angel James Medina Medina,
Rolando Salas López,
Jhon Antony Zabaleta Santisteban,
Katerin Meliza Tuesta Trauco,
Efrain Yury Turpo Cayo,
Nixon Huaman Haro,
Manuel Oliva Cruz,
Darwin Gómez Fernández
Affiliations
Angel James Medina Medina
Instituto de Investigación para el Desarrollo Sustentable de Ceja de Selva (INDES_CES), Universidad Nacional Toribio Rodríguez de Mendoza (UNTRM), Chachapoyas 01001, Peru
Rolando Salas López
Instituto de Investigación para el Desarrollo Sustentable de Ceja de Selva (INDES_CES), Universidad Nacional Toribio Rodríguez de Mendoza (UNTRM), Chachapoyas 01001, Peru
Jhon Antony Zabaleta Santisteban
Instituto de Investigación para el Desarrollo Sustentable de Ceja de Selva (INDES_CES), Universidad Nacional Toribio Rodríguez de Mendoza (UNTRM), Chachapoyas 01001, Peru
Katerin Meliza Tuesta Trauco
Instituto de Investigación para el Desarrollo Sustentable de Ceja de Selva (INDES_CES), Universidad Nacional Toribio Rodríguez de Mendoza (UNTRM), Chachapoyas 01001, Peru
Efrain Yury Turpo Cayo
Programa de Doctorado en Recursos Hidricos (PDRH), Universidad Nacional Agraria La Molina, Ave. La Molina, S.N., Lima 15012, Peru
Nixon Huaman Haro
Instituto de Investigación para el Desarrollo Sustentable de Ceja de Selva (INDES_CES), Universidad Nacional Toribio Rodríguez de Mendoza (UNTRM), Chachapoyas 01001, Peru
Manuel Oliva Cruz
Instituto de Investigación para el Desarrollo Sustentable de Ceja de Selva (INDES_CES), Universidad Nacional Toribio Rodríguez de Mendoza (UNTRM), Chachapoyas 01001, Peru
Darwin Gómez Fernández
Instituto de Investigación para el Desarrollo Sustentable de Ceja de Selva (INDES_CES), Universidad Nacional Toribio Rodríguez de Mendoza (UNTRM), Chachapoyas 01001, Peru
One of the world’s major agricultural crops is rice (Oryza sativa), a staple food for more than half of the global population. In this research, synthetic aperture radar (SAR) and optical images are used to analyze the monthly dynamics of this crop in the lower Utcubamba river basin, Peru. In addition, this study addresses the need to obtain accurate and timely information on the areas under cultivation in order to calculate their agricultural production. To achieve this, SAR sensor and Sentinel-2 optical remote sensing images were integrated using computer technology, and the monthly dynamics of the rice crops were analyzed through mapping and geometric calculation of the surveyed areas. An algorithm was developed on the Google Earth Engine (GEE) virtual platform for the classification of the Sentinel-1 and Sentinel-2 images and a combination of both, the result of which was improved in ArcGIS Pro software version 3.0.1 using a spatial filter to reduce the “salt and pepper” effect. A total of 168 SAR images and 96 optical images were obtained, corrected, and classified using machine learning algorithms, achieving a monthly average accuracy of 96.4% and 0.951 with respect to the overall accuracy (OA) and Kappa Index (KI), respectively, in the year 2019. For the year 2020, the monthly averages were 94.4% for the OA and 0.922 for the KI. Thus, optical and SAR data offer excellent integration to address the information gaps between them, are of great importance to obtaining more robust products, and can be applied to improving agricultural production planning and management.