IEEE Access (Jan 2025)
Indoor Visible Light 3D Localization System Based on Black Wing Kite Algorithm
Abstract
This study proposes an indoor visible light localization technique incorporating the black-winged kite algorithm to address problems such as limited indoor localization accuracy. The black-winged kite algorithm is an intelligent optimization algorithm inspired by the hunting behavior of black-winged kites in nature, and it is designed to solve the problem of global optimization. The indoor visible light localization problem can be transformed into a problem of solving the optimal coordinates of the receiver globally. Combining the black-winged kite algorithm and the indoor visible light problem can effectively localize the receiver’s position accurately in a complex indoor environment. The simulation results show that in the indoor environment of 5m $\times 5$ m $\times 6$ m, the average error of 1.29cm and the maximum error of 6.29cm are achieved after 100 iterations and 90.02% of the average localization error is less than 2.39cm, the horizontal error is less than 2.20cm. The vertical error is 0.39cm, which realizes high-precision localization. The three-dimensional positioning error distribution map visualizes the distribution of the space error in space, further demonstrating the scheme’s effectiveness. It provides a new method for visible light indoor positioning technology.
Keywords