Applied Sciences (Jan 2022)

Utilization of Unsupervised Machine Learning for Detection of Duct Voids inside PSC Box Girder Bridges

  • Da-In Lee,
  • Hyung Choi,
  • Jong-Dae Kim,
  • Chan-Young Park,
  • Yu-Seop Kim

DOI
https://doi.org/10.3390/app12031270
Journal volume & issue
Vol. 12, no. 3
p. 1270

Abstract

Read online

The PSC box girder bridge is a pre-stressed box girder bridge that accounts for a considerable part of large-scale bridges. However, when concrete is poured, even small mistakes might result in voids that appear during long-term maintenance. In this paper, we present a technique for detecting the void in the duct inside the PSC box girder bridge. Data are acquired utilizing the non-destructive impact-echo (IE) approach to detect these voids. IE creates time-series data as signal data initially; however, we want to use a CNN auto-encoder (AE). A scalogram, which is a kind of wavelet transformation, is used to convert time series data into an image. An AE is a type of unsupervised learning that aims to minimize the difference between the input and output. By comparing histograms, the difference is calculated. To begin, we create scalogram images from all IE signal data, which were randomly sampled as 98% normal and 2% void. The CNN AE is then trained and evaluated utilizing all the data. Finally, we examine the input and output histogram similarity distributions. As a consequence, only 4% of the normal data had a similarity of less than two standard deviations from the mean, whereas 34.7% of the void data did. As a result, the existence of voids inside the PSC duct could be demonstrated to be predictive in the absence of annotated data.

Keywords